
Physics , Condensed Matter
Homework 

Due Thursday, th December 

Jacob Lewis Bourjaily

Problem 1: Little-Parks Experiment

Consider a long, thin-walled, hollow cylinder of radius R and thickness d made of a superconductor
subjected to an external magnetic field H which is parallel to the axis of the cylinder. If the wave
function for superconducting electron pairs Ψ(r) is taken as the order parameter for a Landau-Ginzburg
theory, the free energy density is then
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Here, we have made the additional assumption that the leading coefficient is a linear function in T

that vanishes at the zero-field critical temperature Tc0
. To lowest order in the induced current, ~H = ~B

everywhere, and the last term of the free energy may be ignored.
a. We are to find the lowest free-energy state as a function of both T and H , for H such that the

total flux through the interior of the cylinder is no more than a few flux quanta. We are to give the
values of |Ψ(r)| and ~vs(r) and calculate the shifted critical temperature as a function of applied field.

Let the cylinder lie with its axis in the ẑ-direction in cylindrical coordinates. We may
write choose our gauge so that the vector potential is

~A =
rH

2
(0, 1, 0) , (1.2)

which is easily seen to give rise to ~H = Hẑ.
Before we try to find the minimum of the free energy, it will be helpful to cut away

generality of our analysis for the conveniences offered by the case at hand. Recall
that the field within a thin-walled superconductor is well approximated by London
theory; this is because gradient terms in the magnitude |Ψ| cost too much free energy
when the field must vanish outside of the thin cylinder. Therefore, we may write

Ψ(r) = ψeiϕ(r), for ψ ∈ R. (1.3)

Of course, Ψ must be taken to vanish outside the superconductor, but this will not
really complicate our analysis. Observe that
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which encourages us to write the fourth term in (1.1) as
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Using the symmetry of the problem it is obvious that there are only currents in

the θ̂-direction; this implies that ∂r(ϕ) = ∂z(ϕ) = 01; so ϕ is only a function of θ.
Furthermore, single-valuedness of the wave function requires that

∮

∇ϕ = 2πr
1

r
∂θϕ = 2πn, =⇒ ∂θϕ = n, =⇒ ϕ(θ) = nθ. (1.6)

Using this together with the definition

Φ0 ≡ hc

2e
, (1.7)

and the fact that the flux through the cylinder is Φ = HπR2, we can write
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1Actually, symmetry does not exclude currents in the ẑ-direction: these are excluded because they raise the free energy

unnecessarily—so that the ground state will have no vertical components.
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Figure 1. The velocity operator vs as a function of the applied field H .
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Figure 2. The magnitude of the wave funciton ψ(H).

Putting everything together, we find the free energy of the superconductor to be
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)ψ2 +

β

2
ψ4 +
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2. (1.9)

Notice that the free energy is naturally lowered by seeking the smallest possible value
of vs. This is done by choosing the integer n so that n − Φ

Φ0

is minimized. This is
shown in Figure 1. Minimizing this with respect to the field magnitude ψ, we obtain
the Landau-Ginzburg equation
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The parametric dependence on H is shown in Figure 2.
If we define Tc(H) to be the field temperature at which ψ2 vanishes for a given H (which

enters our expression via vs), we see that

Tc(H) = Tc0
− mv2

s

2a
. (1.12)

This was one of the principle experimental results of Little and Parks. The depen-
dence of Tc on H is shown in Figure 3.
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Figure 3. The critical temperature as a function of H .
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Figure 4. The qualitative structure of B(H).

b. We are to obtain the field ~B(H) to leading order in the current of the cylinder and describe when
this approximation is valid.

Recall that the current density is
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We can find the (upper bound on) the maximum of J by differentiating with respect
to vs; we find

v2
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will maximize J . The reason why one could be worried is that vs is of course bounded.
However, the bound on vs extends beyond the vs required to saturate the maximum
of J ,
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Anyway, we may use this to find the maximum current,
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Using the equation above for the current as a function of vs, we can compute the induced
B-field as a function of H . The total field is shown in Figure 4.

Problem 2: Plane Waves on Thin Superconductors

Consider a thin-sheet superconductor with the same Landau-Ginzburg free energy expansion as dis-
cussed in problem 1. We are to determine the spatially uniform configurations of Ψ(r) which are minima
of the free energy under variation of ψ. We should determine the maximum current that can be carried
by the wave—and especially describe the behaviour as Tc0

is approached from below.

Similar to the situation above, we notice that solutions will necessarily have no spatial
variation in magnitude—again, because this gradient term costs too much in the free
energy. Therefore, we may write (approximate) any solution which minimizes the
Landau Ginzburg free energy as Ψ(r) = ψeiϕ(r) for ψ ∈ R. And also like above we
find that—ignoring the magnetic fields induced by the supercurrent—
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where

~vs(r) ≡
~

m
~∇(ϕ(r)). (2.2)

Notice that this time there is no contribution from the vector potential.
A spatially uniform solution must therefore be one such that ~vs(r) = k · x for some

constant vector k inside the thin-sheet superconductor and x̂ is a direction in the
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plane—which we may take as one of the coordinate axes for convenience. Such a
solution will manifestly generate a spatially uniform velocity,

~vs =
~

m
kx̂. (2.3)

Recalling some standard notation,
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we can rewrite the minimization condition as
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Therefore, we see that spatially uniform solutions are of the form

Ψ(r) = ψ0

√

1 − ξ2k2eikx. (2.6)
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Notice that this requires that

k <
1

ξ
(2.7)

for a superconducting solution.
This gives us a current of
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The extreme current can be found via differentiation
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Near T = Tc0
from below, we know that
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Problem 3: Superconducting Spheres and Monopoles

Aluminium is a type-I superconductor with coherence length ξ = 1.5 × 10−6m and a magnetic
penetration length λ = 2 × 10−8m at low temperature.

a. At zero temperature, a spherical piece of aluminium of radius r ≫ λ is placed in a magnetic field
~B = B(z)ẑ with a small field gradient (r ≫ dB/dz) and B < Hc. We are to state Hc(T = 0) and
compute the force on the sphere for the specific case r = 10−3 m, B = 10−3 T, and dB/dz = 10−2 T/m
and compare this to the case if B 7→ 1 T while keeping everything else the same.

First, we notice that

Hc =
Φ0

2
√

2πξ(0)λ(0)
= 7.8 × 10−3 T = 78 gauss. (3.1)

To compute the force of the sphere of superconducting aluminium from the B-field,
we need to find the external field. This is done by first finding the field inside

the superconductor. There, we know that ~B must vanish. Because gradient is small
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compared to the radius of the sphere, we can approximate the solution by considering
the field to be constant throughout the sphere. It is clear that the superconducting
currents on the surface must cancel this field exactly inside. Therefore, we can quickly
discover the required field arrangement if we know of a system which gives rise to a
uniform magnetic inductance within the volume of a sphere.

Now, if we remember our electrodynamics as much as any student studying for Prelim-
inary exams should, then we recall at once that such a field distribution is obtained
by a rotating, insulating sphere of uniform surface charge density. We could derive
this solution but, for the sake of brevity, we will refer the reader to homework solu-
tions prepared many years ago by the author2. Alternatively, we draw the reader’s
attention to section (5.10) of Jackson’s Classical Electrodynamics.

The principle result was that if a sphere has a uniform magnetic field in its interior given
by

Bẑ =
2µ0

3
Mẑ, (3.2)

then the field outside the sphere is precisely that of a dipole with dipole moment

mẑ =
4πr3

3
Mẑ. (3.3)

In our present situation, we need the field within the sphere to exactly cancel that of the
ambient B-field. This tells us that currents which generate a uniform Bin = −B(z)
give rise to a perfect dipole field outside the sphere with dipole moment

mẑ =
4πr3

3

3

2µ0
(−B(z)) = −2πr3

µ0
B(z). (3.4)

Making use again of the fact that the sphere is small compared to the gradient of B, we
will not lose much by considering the interaction between B and the sphere therefore
to be that between a any magnetic inductance and a dipole—namely,

~F = ~∇(~m · ~B) = −2πr3

µ0
B(z)

∂B(z)

∂z
. (3.5)
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Putting in the numbers for our problem, we find

F (10−3 T) = 10−2 dyne, and F (1 T ) = 10 dyne. (3.6)

b. Consider a Dirac monopole/anti-monopole pair 10−2 m apart within a much larger piece of super-
conducting aluminium at zero temperature. The monopole emits magnetic flux hc/e. We are to give a
rough estimate of the force between these two hypothetical particles.

The physical picture to have in mind is the following. If the two monopoles were sepa-
rated in free-space, their flux lines would be exactly analogous electrostatics. How-
ever, magnetic flux by definition cannot exist within a superconducting state—the
superconductor will do all that it can to confine the magnetic flux to a very small
region in the superconductor. Therefore, it is easy to imagine that all of the flux con-
necting the two monopoles is confined to a narrow ‘sting’ between the two monopoles.
The width of this string is roughly 2λ—because this is as narrow a region as a Type-I
superconductor can confine a region of non-critical state.

We may approximate the situation as there being a cylindrical band connecting the
two monopoles in which there is confined all of the magnetic flux between them and
completely normal-state Aluminium. In terms of energy costs, the flux lines must

2If the grader truly desires to see this calculation, please see the homework prepared during a course in the fall of 
at: http://www.umich.edu/∼jbourj/jackson/5-13.pdf.
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pay a debt of free energy of3

Fmag =
1

8π
dπλ2

(

2hc

eπλ2

)2

=
2dΦ2

0

π2λ2
, (3.7)

where have made use of the flux quantum Φ0. Also, we must pay the energy debt
of raising the superconducting minimum to the normal state over the volume of the
‘flux tube’ of force. Using some identities from work elsewhere, we have as the leading
term in the Landau Ginzburg free-energy potential,

Fs = dπλ2αψ2
0 = dπξ2

2e2H2
c (T )λ2

mc2
mc2

8πe2λ2
= d

ξ2

4
H2

c . (3.8)

Notice that this energy is linear with distance: this is as expected: the energy content
of the flux tube is proportional to its length. We find the force then to be

F = −
(

2Φ2
0

π2λ2
+
ξ2

4
H2

c

)

. (3.9)

This is an attractive force on the order of a dyne.

3I’m not sure exactly the choice of units here, but if I compte Φ0 in Tesla-meters2, then there needs to be a 1/µ0 to

get the units right. I suspect that 1

8π
7→ 1/µ0, but it doesn’t really matter: we are only asked to qualitatively describe the

force.


